Вклад авторовConceptualization, K.S., S.H.W. and R.K.V.; writing—original draft preparation, K.S., A.B., S.R.M., R.P., F.A., L.S., V.P.R., A.T., A.K.M. and S.H.W.; writing—review and editing, K.S., A.B., V.P.R., J.S.C., K.H.M.S. and R.K.V.; supervision, R.K.V. All authors have read and agreed to the published version of the manuscript.
ФинансированиеThis research received no external funding.
Заявление институционального наблюдательного советаNot applicable.
Заявление об информированном согласииNot applicable.
Заявление о доступности данныхNot applicable.
БлагодарностиR.K.V. is thankful to the Science and Engineering Research Board (SERB) of the Department of Science & Technology (DST), Government of India, for providing the J C Bose National Fellowship (SB/S9/Z-13/2019).
Конфликт интересовThe authors declare no conflict of interest.
ЛитератураIISD. World Population to Reach 9.9 Billion by 2050. Available online:
https://sdg.iisd.org/news/world-population-to-reach-9-9-billion-by-2050/ (accessed on 3 February 2022).
Hussain, B. Modernization in plant breeding approaches for improving biotic stress resistance in crop plants. Turk. J. Agric. For.
2015, 39, 515–530. [
Google Scholar] [
CrossRef]
Lin, Z.; Cogan, N.O.I.; Pembleton, L.W.; Spangenberg, G.C.; Forster, J.W.; Hayes, B.J.; Daetwyler, H.D. Genetic Gain and Inbreeding from Genomic Selection in a Simulated Commercial Breeding Program for Perennial Ryegrass. Plant Genome.
2016, 9, 1–12. [
Google Scholar] [
CrossRef] [
PubMed] [
Green Version]
Moose, S.P.; Mumm, R.H. Molecular plant breeding as the foundation for 21st century crop improvement. Plant Physiol.
2008, 147, 969–977. [
Google Scholar] [
CrossRef] [
PubMed] [
Green Version]
Bohra, A.; Jha, U.C.; Godwin, I.D.; Varshney, R.K. Genomic interventions for sustainable agriculture. Plant Biotechnol. J.
2020, 18, 2388–2405. [
Google Scholar] [
CrossRef] [
PubMed]
Sinha, P.; Singh, V.K.; Bohra, A.; Kumar, A.; Reif, J.C.; Varshney, R.K. Genomics and breeding innovations for enhancing genetic gain for climate resilience and nutrition traits. Theor. Appl. Genet.
2021, 134, 1829–1843. [
Google Scholar] [
CrossRef]
Varshney, R.K.; Bohra, A.; Yu, J.; Graner, A.; Zhang, Q.; Sorrells, M.E. Designing Future Crops: Genomics-Assisted Breeding Comes of Age. Trends Plant Sci.
2021, 26, 631–649. [
Google Scholar] [
CrossRef]
Cobb, J.N.; Juma, R.U.; Biswas, P.S.; Arbelaez, J.D.; Rutkoski, J.; Atlin, G.; Hagen, T.; Quinn, M.; Ng, E.H. Enhancing the rate of genetic gain in public-sector plant breeding programs: Lessons from the breeder’s equation. Theor. Appl. Genet.
2019, 132, 627–645. [
Google Scholar] [
CrossRef] [
Green Version]
Brim, C.A. A Modified Pedigree Method of Selection in Soybeans 1. Crop Sci.
1966, 6, 220. [
Google Scholar] [
CrossRef] [
Green Version]
Goulden, C.H. Problems in Plant Selection; Cambridge University Press: Cambridge, UK, 1939; pp. 132–133. [
Google Scholar]
Borlaug, N. Wheat Breeding and Its Impact on World Food Supply; Finlay, K.W., Shephard, K.W., Eds.; Australian Academy of Sciences: Canberra, Australia, 1968; pp. 1–36. [
Google Scholar]
Ghosh, S.; Watson, A.; Gonzalez-Navarro, O.E.; Ramirez-Gonzalez, R.H.; Yanes, L.; Mendoza-Suárez, M.; Simmonds, J.; Wells, R.; Rayner, T.; Green, P.; et al. Speed breeding in growth chambers and glasshouses for crop breeding and model plant research. Nat. Protoc.
2018, 13, 2944–2963. [
Google Scholar] [
CrossRef] [
Green Version]
Mobini, S.H.; Lulsdorf, M.; Warkentin, T.D.; Vandenberg, A. Low red: Far-red light ratio causes faster in vitro flowering in lentil. Can. J. Plant Sci.
2016, 96, 908–918. [
Google Scholar] [
CrossRef] [
Green Version]
Croser, J.S.; Pazos-Navarro, M.; Bennett, R.G.; Tschirren, S.; Edwards, K.; Erskine, W.; Creasy, R.; Ribalta, F.M. Time to flowering of temperate pulses in vivo and generation turnover in vivo–in vitro of narrow-leaf lupin accelerated by low red to far-red ratio and high intensity in the far-red region. Plant Cell Tissue Organ Cult.
2016, 127, 591–599. [
Google Scholar] [
CrossRef]
Hickey, L.T.; Germán, S.E.; Pereyra, S.A.; Diaz, J.E.; Ziems, L.A.; Fowler, R.A.; Platz, G.J.; Franckowiak, J.D.; Dieters, M.J. Speed breeding for multiple disease resistance in barley. Euphytica
2017, 213, 64. [
Google Scholar] [
CrossRef]
Cazzola, F.; Bermejo, C.J.; Guindon, M.F.; Cointry, E. Speed breeding in pea (Pisum sativum L.), an efficient and simple system to accelerate breeding programs. Euphytica
2020, 216, 178. [
Google Scholar] [
CrossRef]
Jähne, F.; Hahn, V.; Würschum, T.; Leiser, W.L. Speed breeding short-day crops by LED-controlled light schemes. Theor. Appl. Genet.
2020, 133, 2335–2342. [
Google Scholar] [
CrossRef] [
PubMed]
Pfeiffer, N.E. Microchemical and morphological studies of effect of light on plants. Bot. Gaz.
1926, 81, 173–195. [
Google Scholar] [
CrossRef]
Wheeler, R.M. A historical background of plant lighting: An introduction to the workshop. Hortic. Sci.
2008, 43, 1942–1943. [
Google Scholar] [
CrossRef] [
Green Version]
Sysoeva, M.I.; Markovskaya, E.F.; Shibaeva, T.G. Plants under Continuous Light: A Review. Plant Stress
2010, 4, 5–17. [
Google Scholar]
Pazos-Navarro, M.; Castello, M.; Bennett, R.G.; Nichols, P.; Croser, J. In vitro-assisted single-seed descent for breeding-cycle compression in subterranean clover (Trifolium subterraneum L.). Crop Pasture Sci.
2017, 68, 958. [
Google Scholar] [
CrossRef]
Ribalta, F.M.; Pazos-Navarro, M.; Nelson, K.; Edwards, K.; Ross, J.J.; Bennett, R.; Munday, C.; Erskine, W.; Ochatt, S.J.; Croser, J. Precocious floral initiation and identification of exact timing of embryo physiological maturity facilitate germination of immature seeds to truncate the lifecycle of pea. Plant Growth Regul.
2017, 81, 345–353. [
Google Scholar] [
CrossRef]
Ballare, C.L.; Scopel, A.L.; Stapleton, A.E.; Yanovsky, M.J. Solar Ultraviolet-B Radiation Affects Seedling Emergence, DNA Integrity, Plant Morphology, Growth Rate, and Attractiveness to Herbivore Insects in Datura ferox. Plant Physiol.
1996, 112, 161–170. [
Google Scholar] [
CrossRef] [
Green Version]
Singh, D.; Basu, C.; Meinhardt-Wollweber, M.; Roth, B. LEDs for energy efficient greenhouse lighting. Renew. Sustain. Energy Rev.
2015, 49, 139–147. [
Google Scholar] [
CrossRef] [
Green Version]
Christopher, J.; Richard, C.; Chenu, K.; Christopher, M.; Borrell, A.; Hickey, L. Integrating Rapid Phenotyping and Speed Breeding to Improve Stay-Green and Root Adaptation of Wheat in Changing, Water-Limited, Australian Environments. Procedia Environ. Sci.
2015, 29, 175–176. [
Google Scholar] [
CrossRef] [
Green Version]
Liu, H.; Zwer, P.; Wang, H.; Liu, C.; Lu, Z.; Wang, Y.; Yan, G. A fast generation cycling system for oat and triticale breeding. Plant Breed.
2016, 135, 574–579. [
Google Scholar] [
CrossRef]
Mukade, K. New Procedures for Accelerating Generation Advancement in Wheat Breeding. JARQ
1974, 8, 1–5. [
Google Scholar]
Mobini, S.H.; Lulsdorf, M.; Warkentin, T.; Vandenberg, A. Plant growth regulators improve in vitro flowering and rapid generation advancement in lentil and faba bean. Vitr. Cell. Dev. Biol.-Plant
2014, 51, 71–79. [
Google Scholar] [
CrossRef]
Watson, A.; Ghosh, S.; Williams, M.J.; Cuddy, W.S.; Simmonds, J.; Rey, M.-D.; Hatta, M.A.M.; Hinchliffe, A.; Steed, A.; Reynolds, D.; et al. Speed breeding is a powerful tool to accelerate crop research and breeding. Nat. Plants
2018, 4, 23–29. [
Google Scholar] [
CrossRef] [
Green Version]
Atieno, J.; Li, Y.; Langridge, P.; Dowling, K.; Brien, C.; Berger, B.; Varshney, R.; Sutton, T. Exploring genetic variation for salinity tolerance in chickpea using image-based phenotyping. Sci. Rep.
2017, 7, 1300. [
Google Scholar] [
CrossRef] [
Green Version]
Ochatt, S.J.; Sangwan, R.S.; Marget, P.; Assoumou Ndong, Y.; Rancillac, M.; Perney, P. New Approaches towards the Shortening of Generation Cycles for Faster Breeding of Protein Legumes. Plant Breed.
2002, 121, 436–440. [
Google Scholar] [
CrossRef]
Mobini, S.H.; Warkentin, T.D. A simple and efficient method of in vivo rapid generation technology in pea (Pisum sativum L.). Vitr. Cell. Dev. Biol.-Plant
2016, 52, 530–536. [
Google Scholar] [
CrossRef]
Rana, M.M.; Takamatsu, T.; Baslam, M.; Kaneko, K.; Itoh, K.; Harada, N.; Sugiyama, T.; Ohnishi, T.; Kinoshita, T.; Takagi, H.; et al. Salt Tolerance Improvement in Rice through Efficient SNP Marker-Assisted Selection Coupled with Speed-Breeding. Int. J. Mol. Sci.
2019, 20, 2585. [
Google Scholar] [
CrossRef] [
PubMed] [
Green Version]
Collard, B.C.Y.; Beredo, J.C.; Lenaerts, B.; Mendoza, R.; Santelices, R.; Lopena, V.; Verdeprado, H.; Raghavan, C.; Gregorio, G.B.; Vial, L.; et al. Revisiting rice breeding methods—Evaluating the use of rapid generation advance (RGA) for routine rice breeding. Plant Prod. Sci.
2017, 20, 337–352. [
Google Scholar] [
CrossRef] [
Green Version]
Forster, B.P. Accelerated plant breeding. CAB Rev.
2014, 9, 1–16. [
Google Scholar] [
CrossRef] [
Green Version]
Nagatoshi, Y.; Fujita, Y. Accelerating Soybean Breeding in a CO
2-Supplemented Growth Chamber. Plant Cell Physiol.
2019, 60, 77–84. [
Google Scholar] [
CrossRef] [
PubMed] [
Green Version]
Saxena, K.; Saxena, R.K.; Varshney, R.K. Use of immature seed germination and single seed descent for rapid genetic gains in pigeonpea. Plant Breed.
2017, 136, 954–957. [
Google Scholar] [
CrossRef] [
Green Version]
O'Connor, D.J.; Wright, G.C.; Dieters, M.J.; George, D.L.; Hunter, M.N.; Tatnell, J.R.; Fleischfresser, D.B. Development and Application of Speed Breeding Technologies in a Commercial Peanut Breeding Program. Peanut Sci.
2013, 40, 107–114. [
Google Scholar] [
CrossRef]
Stetter, M.G.; Zeitler, L.; Steinhaus, A.; Kroener, K.; Biljecki, M.; Schmid, K.J. Crossing Methods and Cultivation Conditions for Rapid Production of Segregating Populations in Three Grain Amaranth Species. Front. Plant Sci.
2016, 7, 816. [
Google Scholar] [
CrossRef] [
PubMed] [
Green Version]
Croser, J.; Mao, D.; Dron, N.; Michelmore, S.; McMurray, L.; Preston, C.; Bruce, D.; Ogbonnaya, F.C.; Ribalta, F.M.; Hayes, J.; et al. Evidence for the Application of Emerging Technologies to Accelerate Crop Improvement—A Collaborative Pipeline to Introgress Herbicide Tolerance Into Chickpea. Front. Plant Sci.
2021, 12, 779122. [
Google Scholar] [
CrossRef] [
PubMed]
Lulsdorf, M.M.; Banniza, S. Rapid generation cycling of an F2 population derived from a cross between Lens culinaris Medik. and Lens ervoides (Brign.) Grande after aphanomyces root rot selection. Plant Breed.
2018, 137, 486–491. [
Google Scholar] [
CrossRef]
Gosal, S.S.; Pathak, D.; Wani, S.H.; Vij, S.; Pathak, M. Accelerated Breeding of Plants: Methods and Applications. In Accelerated Plant Breeding, Volume 1; Gosal, S.S., Wani, S.H., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 1–29. ISBN 978-3-030-41865-6. [
Google Scholar]
Khoo, K.H.P.; Sheedy, J.G.; Taylor, J.D.; Croser, J.S.; Hayes, J.E.; Sutton, T.; Thompson, J.P.; Mather, D.E. A QTL on the Ca7 chromosome of chickpea affects resistance to the root-lesion nematode Pratylenchus thornei. Mol. Breed.
2021, 41, 78. [
Google Scholar] [
CrossRef]
Dadu, R.H.R.; Bar, I.; Ford, R.; Sambasivam, P.; Croser, J.; Ribalta, F.; Kaur, S.; Sudheesh, S.; Gupta, D. Lens orientalis Contributes Quantitative Trait Loci and Candidate Genes Associated with Ascochyta Blight Resistance in Lentil. Front. Plant Sci.
2021, 12, 703283. [
Google Scholar] [
CrossRef]
Taylor, C.M.; Garg, G.; Berger, J.D.; Ribalta, F.M.; Croser, J.S.; Singh, K.B.; Cowling, W.A.; Kamphuis, L.G.; Nelson, M.N. A Trimethylguanosine Synthase1-like (TGS1) homologue is implicated in vernalisation and flowering time control. Theor. Appl. Genet.
2021, 134, 3411–3426. [
Google Scholar] [
CrossRef]
Zaman, S.U.; Malik, A.I.; Kaur, P.; Ribalta, F.M.; Erskine, W. Waterlogging Tolerance at Germination in Field Pea: Variability, Genetic Control, and Indirect Selection. Front. Plant Sci.
2019, 10, 95. [
Google Scholar] [
CrossRef] [
PubMed] [
Green Version]
Yao, Y.; Zhang, P.; Liu, H.; Lu, Z.; Yan, G. A fully in vitro protocol towards large scale production of recombinant inbred lines in wheat (Triticum aestivum L.). Plant Cell Tissue Organ Cult.
2017, 128, 655–661. [
Google Scholar] [
CrossRef]
Ferrie, A.M.R. Doubled haploid production in nutraceutical species: A review. Euphytica
2007, 158, 347–357. [
Google Scholar] [
CrossRef]
Ortiz, R.; Trethowan, R.; Ferrara, G.O.; Iwanaga, M.; Dodds, J.H.; Crouch, J.H.; Crossa, J.; Braun, H.-J. High yield potential, shuttle breeding, genetic diversity, and a new international wheat improvement strategy. Euphytica
2007, 157, 365–384. [
Google Scholar] [
CrossRef]
Aldwinckle, H.S. Flowering of apple seedlings 16–20 months after germination. Hortic. Sci.
1975, 10, 124–126. [
Google Scholar]
Van Nocker, S.; Gardiner, S.E. Breeding better cultivars, faster: Applications of new technologies for the rapid deployment of superior horticultural tree crops. Hortic. Res.
2014, 1, 14022. [
Google Scholar] [
CrossRef] [
Green Version]
De Pauw, R.M.; Clarke, J.M. Acceleration of generation advancement in spring wheat. Euphytica
1976, 25, 415–418. [
Google Scholar] [
CrossRef]
Robertson, L.D.; Curtis, B.C. Germination of Immature Kernels of Winter Wheat. Crop Sci.
1967, 7, 269–270. [
Google Scholar] [
CrossRef]
Tanaka, J.; Hayashi, T.; Iwata, H. A practical, rapid generation-advancement system for rice breeding using simplified biotron breeding system. Breed. Sci.
2016, 66, 542–551. [
Google Scholar] [
CrossRef] [
Green Version]
Ohnishi, T.; Yoshino, M.; Yamakawa, H.; Kinoshita, T. The Biotron Breeding System: A Rapid and Reliable Procedure for Genetic Studies and Breeding in Rice. Plant Cell Physiol.
2011, 52, 1249–1257. [
Google Scholar] [
CrossRef] [
PubMed]
Alahmad, S.; Dinglasan, E.; Leung, K.M.; Riaz, A.; Derbal, N.; Voss-Fels, K.P.; Able, J.A.; Bassi, F.M.; Christopher, J.; Hickey, L.T. Speed breeding for multiple quantitative traits in durum wheat. Plant Methods
2018, 14, 36. [
Google Scholar] [
CrossRef]
Zhang, Z.; Wei, W.; Zhu, H.; Challa, G.S.; Bi, C.; Trick, H.N.; Li, W. W3 Is a New Wax Locus That Is Essential for Biosynthesis of β-Diketone, Development of Glaucousness, and Reduction of Cuticle Permeability in Common Wheat. PLoS ONE
2015, 10, e0140524. [
Google Scholar] [
CrossRef] [
Green Version]
Rizal, G.; Karki, S.; Alcasid, M.; Montecillo, F.; Acebron, K.; Larazo, N.; Garcia, R.; Slamet-Loedin, I.H.; Quick, W.P. Shortening the Breeding Cycle of Sorghum, a Model Crop for Research. Crop Sci.
2014, 54, 520–529. [
Google Scholar] [
CrossRef]
Burris, J.S. Effect of Seed Maturation and Plant Population on Soybean Seed Quality. Agron. J.
1973, 65, 440–441. [
Google Scholar] [
CrossRef]
Roumet, P.; Morin, F. Germination of Immature Soybean Seeds to Shorten Reproductive Cycle Duration. Crop Sci.
1997, 37, 521–525. [
Google Scholar] [
CrossRef]
Dagustu, N.; Bayram, G.; Sincik, M.; Bayraktaroglu, M. The Short Breeding Cycle Protocol Effective on Diverse Genotypes of Sunflower (Helianthus annuus L.). Turkish J. Field Crop.
2012, 17, 124–128. [
Google Scholar]
Murashige, T.; Skoog, F. A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures. Physiol. Plant.
1962, 15, 473–497. [
Google Scholar] [
CrossRef]
Espósito, M.A.; Almirón, P.; Gatti, I.; Cravero, V.P.; Anido, F.S.L.; Cointry, E.L. Methodology A rapid method to increase the number of F1 plants in pea (Pisum sativum) breeding programs. Genet. Mol. Res.
2012, 11, 2729–2732. [
Google Scholar] [
CrossRef]
Samineni, S.; Sen, M.; Sajja, S.B.; Gaur, P.M. Rapid generation advance (RGA) in chickpea to produce up to seven generations per year and enable speed breeding. Crop J.
2020, 8, 164–169. [
Google Scholar] [
CrossRef]
Parmar, S.; Deshmukh, D.B.; Kumar, R.; Manohar, S.S.; Joshi, P.; Sharma, V.; Chaudhari, S.; Variath, M.T.; Gangurde, S.S.; Bohar, R.; et al. Single Seed-Based High-Throughput Genotyping and Rapid Generation Advancement for Accelerated Groundnut Genetics and Breeding Research. Agronomy
2021, 11, 1226. [
Google Scholar] [
CrossRef]
Baier, K.; Maynard, C.; Powell, W.A. Early Flowering in Chestnut Species Induced under High Intensity, High Dose Light in Growth Chambers. J. Am. Chestnut Found.
2012, 26, 8–10. [
Google Scholar]
Flachowsky, H.; Le Roux, P.-M.; Peil, A.; Patocchi, A.; Richter, K.; Hanke, M.-V. Application of a high-speed breeding technology to apple (Malus × domestica) based on transgenic early flowering plants and marker-assisted selection. New Phytol.
2011, 192, 364–377. [
Google Scholar] [
CrossRef]
Vira, B.; Wildburger, C.; Mansourian, S.; International Union of Forestry Research Organizations (Eds.) Forests, Trees and Landscapes for Food Security and Nutrition: A Global Assessment Report; IUFRO World Series; IUFRO: Vienna, Austria, 2015; ISBN 978-3-902762-40-5. [
Google Scholar]
Souza, L.S.; Diniz, R.P.; Neves, R.; Alves, A.A.C.; de Oliveira, E.J. Grafting as a strategy to increase flowering of cassava. Sci. Hortic.
2018, 240, 544–551. [
Google Scholar] [
CrossRef] [
PubMed]
Demers, D.-A.; Dorais, M.; Wien, C.H.; Gosselin, A. Effects of supplemental light duration on greenhouse tomato (Lycopersicon esculentum Mill.) plants and fruit yields. Sci. Hortic.
1998, 74, 295–306. [
Google Scholar] [
CrossRef]
Bhattaraj, S.P.; de la Pena, R.C.; Midmore, D.J.; Palchamy, K. In vitro culture of immature seed for rapid generation advancement in tomato. Euphytica
2009, 167, 23–30. [
Google Scholar] [
CrossRef]
Manzur, J.; Oliva-Alarcón, M.; Rodríguez-Burruezo, A. In vitro germination of immature embryos for accelerating generation advancement in peppers (Capsicum annuum L.). Sci. Hortic.
2014, 170, 203–210. [
Google Scholar] [
CrossRef]
Geboloğlu, N.; Bozmaz, S.; Aydin, M.; Cakmak, P. The role of growth regulators, embryo age and genotypes on immature embryo germination and rapid generation advancement in tomato (Lycopersicon esculentum Mill.). Afr. J. Biotechnol.
2011, 10, 4895–4900. [
Google Scholar]