1.Lutz W., Kc S. Dimensions of global population projections: What do we know about future population trends and structures? Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 2010;365:2779–2791. doi: 10.1098/rstb.2010.0133. [
DOI] [
PMC free article] [
PubMed] [
Google Scholar]
2.Voss-Fels K.P., Stahl A., Hickey L.T. Q&A: Modern crop breeding for future food security. BMC Biol. 2019;17:18. doi: 10.1186/s12915-019-0638-4. [
DOI] [
PMC free article] [
PubMed] [
Google Scholar]
3.Kulchin Y.N., Zmeeva V.N., Subbotin E.P., Kostyanko A.A. The effect of multispectral light emitting diodes (LEDs) on the activation of morphogenic processes in cell culture of rice Oryza sativa. Defect Diffus. Forum. 2018;386:236–243. doi: 10.4028/www.scientific.net/DDF.386.236. [
DOI] [
Google Scholar]
4.Breseghello F., Coelho A.S.G. Traditional and modern plant breeding methods with examples in rice (Oryza sativa L.) J. Agric. Food Chem. 2013;61:8277–8286. doi: 10.1021/jf305531j. [
DOI] [
PubMed] [
Google Scholar]
5.Anand A., Subramanian M., Kar D. Breeding techniques to dispense higher genetic gains. Front. Plant Sci. 2023;13:1076094. doi: 10.3389/fpls.2022.1076094. [
DOI] [
PMC free article] [
PubMed] [
Google Scholar]
6.Lenaerts B., Collard B.C.Y., Demont M. Review: Improving global food security through accelerated plant breeding. Plant Sci. 2019;287:110207. doi: 10.1016/j.plantsci.2019.110207. [
DOI] [
PMC free article] [
PubMed] [
Google Scholar]
7.Raj S., Roodbar S., Brinkley C., Wolfe D.W. Food Security and Climate Change: Differences in Impacts and Adaptation Strategies for Rural Communities in the Global South and North. Front. Sustain. Food Syst. 2022;5:691191. doi: 10.3389/fsufs.2021.691191. [
DOI] [
Google Scholar]
8.Fischer G., Shah M., Tubiello F.N., van Velhuizen H. Socio-economic and climate change impacts on agriculture: An integrated assessment, 1990–2080. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 2005;360:2067–2083. doi: 10.1098/rstb.2005.1744. [
DOI] [
PMC free article] [
PubMed] [
Google Scholar]
9.Alahmad S., Dinglasan E., Leung K.M., Riaz A., Derbal N., Voss-Fels K.P., Able J.A., Bassi F.M., Christopher J., Hickey L.T. Speed breeding for multiple quantitative traits in durum wheat. Plant Methods. 2018;14:36. doi: 10.1186/s13007-018-0302-y. [
DOI] [
PMC free article] [
PubMed] [
Google Scholar]
10.Poulet L., Massa G.D., Morrow R.C., Bourget C.M., Wheeler R.M., Mitchell C.A. Significant reduction in energy for plant-growth lighting in space using targeted LED lighting and spectral manipulation. Life Sci. Space Res. 2014;2:43–53. doi: 10.1016/j.lssr.2014.06.002. [
DOI] [
Google Scholar]
11.Figueiredo M.S.N., Pereira A.M. Managing Knowledge—The Importance of Databases in the Scientific Production. Procedia Manuf. 2017;12:166–173. doi: 10.1016/j.promfg.2017.08.021. [
DOI] [
Google Scholar]
12.Cook T.M., Isenegger D., Dutta S., Sahab S., Kay P., Aboobucker S.I., Biswas E., Heerschap S., Nikolau B.J., Dong L., et al. Overcoming roadblocks for in vitro nurseries in plants: Induction of meiosis. Front. Plant Sci. 2023;14:1204813. doi: 10.3389/fpls.2023.1204813. [
DOI] [
PMC free article] [
PubMed] [
Google Scholar]
13.Turck F., Fornara F., Coupland G. Regulation and Identity of Florigen: FLOWERING LOCUS T Moves Center Stage. Annu. Rev. Plant Biol. 2008;59:573–594. doi: 10.1146/annurev.arplant.59.032607.092755. [
DOI] [
PubMed] [
Google Scholar]
14.Chen M., Chory J., Fankhauser C. Light Signal Transduction in Higher Plants. Annu. Rev. Genet. 2004;38:87–117. doi: 10.1146/annurev.genet.38.072902.092259. [
DOI] [
PubMed] [
Google Scholar]
15.Jiao Y., Ma L., Strickland E., Deng X.W. Conservation and divergence of light-regulated genome expression patterns during seedling development in rice and Arabidopsis. Plant Cell. 2005;17:3239–3256. doi: 10.1105/tpc.105.035840. [
DOI] [
PMC free article] [
PubMed] [
Google Scholar]
16.Fang L., Ma Z., Wang Q., Nian H., Ma Q., Huang Q., Mu Y. Plant Growth and Photosynthetic Characteristics of Soybean Seedlings Under Different LED Lighting Quality Conditions. J. Plant Growth Regul. 2021;40:668–678. doi: 10.1007/s00344-020-10131-2. [
DOI] [
Google Scholar]
17.Ghosh S., Watson A., Gonzalez-Navarro O.E., Ramirez-Gonzalez R.H., Yanes L., Mendoza-Suárez M., Simmonds J., Wells R., Rayner T., Green P., et al. Speed breeding in growth chambers and glasshouses for crop breeding and model plant research. Nat. Protoc. 2018;13:2944–2963. doi: 10.1038/s41596-018-0072-z. [
DOI] [
PubMed] [
Google Scholar]
18.Nelson J.A., Bugbee B. Economic analysis of greenhouse lighting: Light emitting diodes vs. high intensity discharge fixtures. PLoS ONE. 2014;9:e99010. doi: 10.1371/journal.pone.0099010. [
DOI] [
PMC free article] [
PubMed] [
Google Scholar]
19.Stefański P., Siedlarz-Slowacka P., Matysik P., Rybka K. Efficiency of LED lamps used in cereal crop breeding greenhouses. Int. J. Agric. Biol. Eng. 2022;15:75–83. doi: 10.25165/j.ijabe.20221502.5775. [
DOI] [
Google Scholar]
20.Morrow R.C. LED Lighting in Horticulture. HortScience Horts. 2008;43:1947–1950. doi: 10.21273/HORTSCI.43.7.1947. [
DOI] [
Google Scholar]
21.Agarwal A., Gupta S.D. Impact of Light-Emitting Diodes (LEDs) and Its Potential on Plant Growth and Development in Controlled-Environment Plant Production System. Curr. Biotechnol. 2016;5:28–43. doi: 10.2174/2211550104666151006001126. [
DOI] [
Google Scholar]
22.Danila E., Lucache D.D. Efficient lighting system for greenhouses; Proceedings of the 2016 International Conference and Exposition on Electrical and Power Engineering (EPE); Iasi, Romania. 20–22 October 2018; pp. 439–444. [
DOI] [
Google Scholar]
23.Monostori I., Heilmann M., Kocsy G., Rakszegi M., Ahres M., Altenbach S.B., Szalai G., Pál M., Toldi D., Simon-Sarkadi L., et al. LED lighting–modification of growth, metabolism, yield and flour composition in wheat by spectral quality and intensity. Front. Plant Sci. 2018;9:605–621. doi: 10.3389/fpls.2018.00605. [
DOI] [
PMC free article] [
PubMed] [
Google Scholar]
24.Singh D., Basu C., Meinhardt-Wollweber M., Roth B. LEDs for energy efficient greenhouse lighting. Renew. Sustain. Energy Rev. 2015;49:139–147. doi: 10.1016/j.rser.2015.04.117. [
DOI] [
Google Scholar]
25.Bantis F., Smirnakou S., Ouzounis T., Koukounaras A., Ntagkas N., Radoglou K. Current status and recent achievements in the field of horticulture with the use of light-emitting diodes (LEDs) Sci. Hortic. 2018;235:437–451. doi: 10.1016/j.scienta.2018.02.058. [
DOI] [
Google Scholar]
26.Hickey L.T., Hafeez A.N., Robinson H., Jackson S.A., Leal-Bertioli S.C.M., Tester M., Gao C., Godwin I.D., Hayes B.J., Wulff B.B.H. Breeding crops to feed 10 billion. Nat. Biotechnol. 2019;37:744–754. doi: 10.1038/s41587-019-0152-9. [
DOI] [
PubMed] [
Google Scholar]
27.Watson A., Ghosh S., Williams M.J., Cuddy W.S., Simmonds J., Rey M.D., Asyraf Md Hatta M., Hinchliffe A., Steed A., Reynolds D., et al. Speed breeding is a powerful tool to accelerate crop research and breeding. Nat. Plants. 2018;4:23–29. doi: 10.1038/s41477-017-0083-8. [
DOI] [
PubMed] [
Google Scholar]
28.Chiurugwi T., Kemp S., Powell W., Hickey L.T. Speed breeding orphan crops. Theor. Appl. Genet. 2019;132:607–616. doi: 10.1007/s00122-018-3202-7. [
DOI] [
PubMed] [
Google Scholar]
29.Cha J.-K., Park H., Choi C., Kwon Y., Lee S.-M., Oh K.-W., Ko J.-M., Kwon S.-W., Lee J.-H. Acceleration of wheat breeding: Enhancing efficiency and practical application of the speed breeding system. Plant Methods. 2023;19:118. doi: 10.1186/s13007-023-01083-1. [
DOI] [
PMC free article] [
PubMed] [
Google Scholar]
30.Jähne F., Hahn V., Würschum T., Leiser W.L. Speed breeding short-day crops by LED-controlled light schemes. Theor. Appl. Genet. 2020;133:2335–2342. doi: 10.1007/s00122-020-03601-4. [
DOI] [
PMC free article] [
PubMed] [
Google Scholar]
31.Berendsen R.L., Pieterse C.M.J., Bakker P.A.H.M. The rhizosphere microbiome and plant health. Trends Plant Sci. 2012;17:478–486. doi: 10.1016/j.tplants.2012.04.001. [
DOI] [
PubMed] [
Google Scholar]
32.Richardson A.E., Barea J.M., McNeill A.M., Prigent-Combaret C. Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil. 2009;321:305–339. doi: 10.1007/s11104-009-9895-2. [
DOI] [
Google Scholar]
33.Nadeem S.M., Ahmad M., Zahir Z.A., Javaid A., Ashraf M. The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments. Biotechnol. Adv. 2014;32:429–448. doi: 10.1016/j.biotechadv.2013.12.005. [
DOI] [
PubMed] [
Google Scholar]
34.Vacheron J., Desbrosses G., Bouffaud M.L., Touraine B., Moënne-Loccoz Y., Muller D., Legendre L., Wisniewski-Dyé F., Prigent-Combaret C. Plant growth-promoting rhizobacteria and root system functioning. Front. Plant Sci. 2013;4:356. doi: 10.3389/fpls.2013.00356. [
DOI] [
PMC free article] [
PubMed] [
Google Scholar]
35.Hilou A., Zhang H., Franken P., Hause B. Do jasmonates play a role in arbuscular mycorrhiza-induced local bioprotection of Medicago truncatula against root rot disease caused by Aphanomyces euteiches? Mycorrhiza. 2014;24:45–54. doi: 10.1007/s00572-013-0513-z. [
DOI] [
PubMed] [
Google Scholar]
36.Rybakova D., Cernava T., Köberl M., Liebminger S., Etemadi M., Berg G. Endophytes-assisted biocontrol: Novel insights in ecology and the mode of action of Paenibacillus. Plant Soil. 2016;405:125–140. doi: 10.1007/s11104-015-2526-1. [
DOI] [
Google Scholar]
37.Huang H.C., Erickson R.S. Effect of seed treatment with Rhizobium leguminosarum on Pythium damping-off, seedling height, root nodulation, root biomass, shoot biomass, and seed yield of pea and lentil. J. Phytopathol. 2007;155:31–37. doi: 10.1111/j.1439-0434.2006.01189.x. [
DOI] [
Google Scholar]
38.Faust J.E., Logan J. Daily light integral: A research review and high-resolution maps of the United States. HortScience. 2018;53:1250–1257. doi: 10.21273/HORTSCI13144-18. [
DOI] [
Google Scholar]
39.Fouda A., Eid A.M., Elsaied A., El-Belely E.F., Barghoth M.G., Azab E., Gobouri A.A., Hassan S.E.-D. Plant Growth-Promoting Endophytic Bacterial Community Inhabiting the Leaves of Pulicaria incisa (Lam.) DC Inherent to Arid Regions. Plants. 2021;10:76. doi: 10.3390/plants10010076. [
DOI] [
PMC free article] [
PubMed] [
Google Scholar]
40.Fu J., Wang S. Insights into auxin signaling in plant-pathogen interactions. Front. Plant Sci. 2011;2:74. doi: 10.3389/fpls.2011.00074. [
DOI] [
PMC free article] [
PubMed] [
Google Scholar]
41.Jiang C., Mithani A., Belfield E.J., Mott R., Hurst L.D., Harberd N.P. Environmentally responsive genome-wide accumulation of de novo Arabidopsis thaliana mutations and epimutations. Genome Res. 2014;24:1821–1829. doi: 10.1101/gr.177659.114. [
DOI] [
PMC free article] [
PubMed] [
Google Scholar]
42.Doudna J.A., Charpentier E. The new frontier of genome engineering with CRISPR-Cas9. Science. 2014;346:1258096. doi: 10.1126/science.1258096. [
DOI] [
PubMed] [
Google Scholar]
43.Hale C.R., Zhao P., Olson S., Duff M.O., Graveley B.R., Wells L., Terns R.M., Terns M.P. RNA-Guided RNA Cleavage by a CRISPR RNA-Cas Protein Complex. Cell. 2009;139:945–956. doi: 10.1016/j.cell.2009.07.040. [
DOI] [
PMC free article] [
PubMed] [
Google Scholar]
44.Garneau J.E., Dupuis M.È., Villion M., Romero D.A., Barrangou R., Boyaval P., Fremaux C., Horvath P., Magadán A.H., Moineau S. The CRISPR/cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature. 2010;468:67–71. doi: 10.1038/nature09523. [
DOI] [
PubMed] [
Google Scholar]
45.Chaudhuri A., Halder K., Datta A. Classification of CRISPR/Cas system and its application in tomato breeding. Theor. Appl. Genet. 2022;135:367–387. doi: 10.1007/s00122-021-03984-y. [
DOI] [
PMC free article] [
PubMed] [
Google Scholar]
46.Jackson S.A., McKenzie R.E., Fagerlund R.D., Kieper S.N., Fineran P.C., Brouns S.J.J. CRISPR-Cas: Adapting to change. Science. 2017;356:eaal5056. doi: 10.1126/science.aal5056. [
DOI] [
PubMed] [
Google Scholar]
47.Cao H.X., Wang W., Le H.T.T., Vu G.T.H. The Power of CRISPR-Cas9-Induced Genome Editing to Speed Up Plant Breeding. Int. J. Genom. 2016;2016:5078796. doi: 10.1155/2016/5078796. [
DOI] [
PMC free article] [
PubMed] [
Google Scholar]
48.Liu J., Wang S., Wang H., Luo B., Cai Y., Li X., Zhang Y., Wang X. Rapid generation of tomato male-sterile lines with a marker use for hybrid seed production by CRISPR/Cas9 system. Mol. Breed. 2021;41:25. doi: 10.1007/s11032-021-01215-2. [
DOI] [
PMC free article] [
PubMed] [
Google Scholar]
49.Hamada H., Linghu Q., Nagira Y., Miki R., Taoka N., Imai R. An in planta biolistic method for stable wheat transformation. Sci. Rep. 2017;7:11443. doi: 10.1038/s41598-017-11936-0. [
DOI] [
PMC free article] [
PubMed] [
Google Scholar]
50.Mitter N., Worrall E.A., Robinson K.E., Li P., Jain R.G., Taochy C., Fletcher S.J., Carroll B.J., Lu G.Q., Xu Z.P. Clay nanosheets for topical delivery of RNAi for sustained protection against plant viruses. Nat. Plants. 2017;3:16207. doi: 10.1038/nplants.2016.207. [
DOI] [
PubMed] [
Google Scholar]
51.Wang M., Lu Y., Botella J.R., Mao Y., Hua K., Zhu J. Gene Targeting by Homology-Directed Repair in Rice Using a Geminivirus-Based CRISPR/Cas9 System. Mol. Plant. 2017;10:1007–1010. doi: 10.1016/j.molp.2017.03.002. [
DOI] [
PubMed] [
Google Scholar]
52.Fiaz S., Wang X., Younas A., Alharthi B., Riaz A., Ali H. Apomixis and strategies to induce apomixis to preserve hybrid vigor for multiple generations. GM Crops Food Biotechnol. Agric. Food Chain. 2021;12:57–70. doi: 10.1080/21645698.2020.1808423. [
DOI] [
PMC free article] [
PubMed] [
Google Scholar]
53.Gaafar R.M., El Shanshoury A.R., El Hisseiwy A.A., AbdAlhak M.A., Omar A.F., Abd El Wahab M.M., Nofal R.S. Induction of apomixis and fixation of heterosis in Egyptian rice Hybrid1 line using colchicine mutagenesis. Ann. Agric. Sci. 2017;62:51–60. doi: 10.1016/j.aoas.2017.03.001. [
DOI] [
Google Scholar]
54.Liu C., He Z., Zhang Y., Hu F., Li M., Liu Q., Huang Y., Wang J., Zhang W., Wang C., et al. Synthetic apomixis enables stable transgenerational transmission of heterotic phenotypes in hybrid rice. Plant Commun. 2023;4:100470. doi: 10.1016/j.xplc.2022.100470. [
DOI] [
PMC free article] [
PubMed] [
Google Scholar]
55.Aragão F.J.L., Barros L.M.G., de Sousa M.V., Grossi de Sá M.F., Almeida E.R.P., Gander E.S., Rech E.L. Expression of a methionine-rich storage albumin from the Brazil nut (Bertholletia excelsa H.B.K., Lecythidaceae) in transgenic bean plants (Phaseolus vulgaris L., Fabaceae) Genet. Mol. Biol. 1999;22:445–449. doi: 10.1590/S1415-47571999000300026. [
DOI] [
Google Scholar]
56.Feng Z., Mao Y., Xu N., Zhang B., Wei P., Yang D.-L., Wang Z., Zhang Z., Zheng R., Yang L., et al. Multigeneration analysis reveals the inheritance, specificity, and patterns of CRISPR/Cas-induced gene modifications in Arabidopsis. Proc. Natl. Acad. Sci. USA. 2014;111:4632–4637. doi: 10.1073/pnas.1400822111. [
DOI] [
PMC free article] [
PubMed] [
Google Scholar]
57.Chen R., Gajendiran K., Wulff B.B.H. R we there yet? Advances in cloning resistance genes for engineering immunity in crop plants. Curr. Opin. Plant Biol. 2024;77:102489. doi: 10.1016/j.pbi.2023.102489. [
DOI] [
PubMed] [
Google Scholar]
58.Johal G.S., Briggs S.P. Reductase Activity Encoded by the HM1 Disease Resistance Gene in Maize. Science. 1992;258:985–987. doi: 10.1126/science.1359642. [
DOI] [
PubMed] [
Google Scholar]
59.Luo M., Xie L., Chakraborty S., Wang A., Matny O., Jugovich M., Kolmer J.A., Richardson T., Bhatt D., Hoque M., et al. A five-transgene cassette confers broad-spectrum resistance to a fungal rust pathogen in wheat. Nat. Biotechnol. 2021;39:561–566. doi: 10.1038/s41587-020-00770-x. [
DOI] [
PubMed] [
Google Scholar]
60.Fan X., Jiang H., Meng L., Chen J. Gene Mapping, Cloning and Association Analysis for Salt Tolerance in Rice. Int. J. Mol. Sci. 2021;22:11674. doi: 10.3390/ijms222111674. [
DOI] [
PMC free article] [
PubMed] [
Google Scholar]
61.Pinho Morais P.P., Akdemir D., Braatz de Andrade L.R., Jannink J., Fritsche-Neto R., Borém A., Couto Alves F., Hottis Lyra D., Granato Í.S.C. Using public databases for genomic prediction of tropical maize lines. Plant Breed. 2020;139:697–707. doi: 10.1111/pbr.12827. [
DOI] [
Google Scholar]
62.Spindel J., Iwata H. Rice Genomics, Genetics and Breeding. Springer; Singapore: 2018. Genomic selection in rice breeding; pp. 473–496. [
DOI] [
Google Scholar]
63.Meuwissen T.H.E., Hayes B.J., Goddard M.E. Prediction of total genetic value using genome-wide dense marker maps. Genetics. 2001;157:1819–1829. doi: 10.1093/genetics/157.4.1819. [
DOI] [
PMC free article] [
PubMed] [
Google Scholar]
64.Shamshad M., Sharma A. Next Generation Plant Breeding. InTech; Rijeka, Croatia: 2018. The Usage of Genomic Selection Strategy in Plant Breeding. [
DOI] [
Google Scholar]
65.Sun J., Khan M., Amir R., Gul A. Climate Change and Food Security with Emphasis on Wheat. Elsevier; Amsterdam, The Netherlands: 2020. Genomic selection in wheat breeding; pp. 321–330. [
DOI] [
Google Scholar]
66.Desta Z.A., Ortiz R. Genomic selection: Genome-wide prediction in plant improvement. Trends Plant Sci. 2014;19:592–601. doi: 10.1016/j.tplants.2014.05.006. [
DOI] [
PubMed] [
Google Scholar]
67.Alemu A., Åstrand J., Montesinos-López O.A., Isidro y Sánchez J., Fernández-Gónzalez J., Tadesse W., Vetukuri R.R., Carlsson A.S., Ceplitis A., Crossa J., et al. Genomic selection in plant breeding: Key factors shaping two decades of progress. Mol. Plant. 2024;17:552–578. doi: 10.1016/j.molp.2024.03.007. [
DOI] [
PubMed] [
Google Scholar]
68.Diaz S., Ariza-Suarez D., Ramdeen R., Aparicio J., Arunachalam N., Hernandez C., Diaz H., Ruiz H., Piepho H.P., Raatz B. Genetic Architecture and Genomic Prediction of Cooking Time in Common Bean (Phaseolus vulgaris L.) Front. Plant Sci. 2021;11:622213. doi: 10.3389/fpls.2020.622213. [
DOI] [
PMC free article] [
PubMed] [
Google Scholar]
69.Kumar S. Epigenomics for Crop Improvement: Current Status and Future Perspectives. J. Genet. Cell Biol. 2020;3:128–134. [
Google Scholar]
70.Schmid M.W., Heichinger C., Coman Schmid D., Guthörl D., Gagliardini V., Bruggmann R., Aluri S., Aquino C., Schmid B., Turnbull L.A., et al. Contribution of epigenetic variation to adaptation in Arabidopsis. Nat. Commun. 2018;9:4446. doi: 10.1038/s41467-018-06932-5. [
DOI] [
PMC free article] [
PubMed] [
Google Scholar]